 Additional guidelines on appropriate means to lessen the risk of infection by <i>Cryptosporidium</i> are available from the Safe Drinking Water Hotline at (800) 426-4791. Lead in Home Plumbing If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. 	is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. You may be more vulnerable than the general population to certain microbial contaminants, such as <i>Cryptosporidium</i> , in drinking water. Infants, some elderly, or immune compromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider	Important Health Information While your drinking water meets U.S EPA's standard for Arsenic, it does contain low levels of arsenic. U.S EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. U.S EPA continues to research the health effects of low levels of arsenic which	There When You Need Us We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is a snapshot of last year's water quality report. Included are details about your water source, what it contains, and how it compares to standards set by regulatory agencies. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water quality and protect our water resources. We are committed to ensuring the quality of your water and to providing you with this information, because informed customers are our best allies.		ANNUAL
 Use your water meter to detect hidden leaks. Simply turn off all taps and water using appliances. Then check the meter after 15 minutes. If it moved, you have a leak. bblems, especially for pregnant women and young children. onents associated with service lines and home plumbing. This g water, but cannot control the variety of materials used in veral hours, you can minimize the potential for lead exposure ater for drinking or cooking. If you are concerned about lead nation on lead in drinking water, testing methods, and steps rinking Water Hotline or at www.epa.gov/safewater/lead. 	 cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity. Turn off the tap when brushing your teeth. Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year. Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year. 	Water Conservation You can play a role in conserving water and saving yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips: • Automatic dishwashers use 15 gallons for every	Source Water Assessment A Source Water Susceptibility Assessment for your Adrinking water sources is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus our source water protection strategies. Some of this source water assessment information is available on Texas Drinking Water Watch at http://dww2. tceq.texas.gov/DWW/. For more information on source water assessments and protection efforts at our system, please contact us at (915) 564-1332.	PR SRT STD U.S. Postage PAID Gemini Group 22901	
 about upcoming opportunities to participate in public meetings, please contact Gilbert Mesa, Utility Manager, at (915) 564-1332. For more information about health effects of the listed constituents in the following tables, call the EPA hotline at 1-800-426-4791. Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguien que lo entienda bien. Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en espahol, favor de Ilamar al telefono (915) 564-1332 	In the event that the FBWSC water systems are incapable of providing sufficient supply, EPWU water can be accessed via emergency interconnections to the FBWSC water distribution system. QUESTIONS? What If I Have Any Questions or Would Like to Become More Involved? For information about your water quality or to find out	 water supply for these systems derives from wells located within the Fort Bliss Army Base property. Zero percent of this water is purchased from El Paso Water Utilities (EPWU). East Biggs Water System (TX0710187) was contracted to FBWSC in 2014 and 100% of the water for that system is purchased from EPWU. 	 When You Turn on Your Tap, Consider the Source Our drinking water is obtained from ground water sources. The Hueco Mesilla Bolsom Aquifer is located east and west of the Franklin mountains in far west Texas and is recognized as a major aquifer in Texas. Fort Bliss Water Services Company (FBWSC) currently owns and operates four distinct Public Water Systems (PWS) within Fort Bliss. The water distribution systems for Main Post Fort Bliss (TX 0710020), Biggs Army Airfield (TX 0710078), and Site Monitor (TX 0710083) are self-sustaining systems, operating independently of one another. The primary 	Substances That Could Be in Water To ensure that tap water is safe to drink, the U.S. TePA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.	The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material; and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

ъ **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact our business office. For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

EI Paso, TX 79906 Ft Bliss Water Services P.O. Box 6430

importante sobre su agua beber. Traduzcalo o hable con alguien que lo entienda bien. Este informe contiene informacion muy

asistencia en espahol, favor de Ilamar al telefono (915) 564-1332 importante sobre el agua para tomar. Para Este reporte incluye informacion

1-099010XT All rights reserved Copyright ©2016 Gemini Group LLC 🐼 Kecycled and Recyclable

								Ft Bliss	-Main Post	Biggs	Army Airfield	El Paso Water Utilities		East Biggs Water System							
SUBSTANCE (UNIT OF MEASURE)					YEAR MPLED	I	MCL [MRDL]		ICLG RDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOUI	RCE	
Alpha Emitters (pCi/I	_)				2015		15		0	3.0	0-3.0	3.0	0-3.0	10.3	0-10.3	ND	NA	No	Erosion of	natural deposits	
Antimony (ppb)					2014		6		6	ND	NA	ND	NA	0.411	0.04-0.411	ND	NA	No	Discharge f	rom petroleum refineries; F	
Arsenic (ppm)				1	2014		10		NA	5.3	2.8–5.3	5.5	0–5.5	12.0 ¹	0-12.01.2	ND	NA	No	Erosion of natural deposits; runoff production wastes		
Barium (ppm)					2014		2		2	0.11	0.048–0.	1 0.046	0-0.046	0.15 ¹	0.06-0.151	ND	NA	No	Discharge o	f drilling wastes; Discharge fr	
Beta/Photon Emitters	(pCi/L)				2014		50		0	8.5	0–8.5	8.5	0-8.5	17.7 ¹	$0-17.7^{1}$	ND	NA	No	Decay of na	atural and man-made depos	
Bromate (ppb)					2015		10		0	ND	NA	ND	NA	3.0	NA-3.0	ND	NA	No	By-product	of drinking water disinfect	
C hlorine (ppm)					2015		[4]		[4]	2.17	0.66–2.1	7 2.40	0.72-2.40	2.8	NA-2.8	2.2	0.2–2.2	No	Water addi	tive used to control microbe	
Chlorine Dioxide (pp	b)				2015		[800]	[800]	ND	NA	ND	NA	500	NA-500	ND	NA	No	Water addi	tive used to control microbe	
C hlorite (ppm)					2015		1		0.8	ND	NA	ND	NA	0.399	NA-0.399	ND	NA	No	By-product	of drinking water disinfect	
C hromium (ppb)					2014		100		100	9.5	5.0–9.5	9.8	0–9.8	6.80 ¹	0-6.80 ¹	ND	NA	No	Discharge fi	om steel and pulp mills; Ero	
Combined Radium (p	Ci/L)				2015		5		0	ND	NA	ND	NA	1.2	0-1.2	ND	NA	No	Erosion of	natural deposits	
Fluoride (ppm)				:	2014		4		4	1.03	0–1.03	1.03	0–1.03	0.911	0.12-0.911	ND	NA	No	Erosion of 1 from fertiliz	natural deposits; Water addit er and aluminum factories	
Haloacetic Acids [HAA]-Stage 1	(ppb))		2015		60		NA	2.8	0–2.8	ND	NA	34.8	0-34.8	19.5	0–19.5	No	By-product	of drinking water disinfect	
Nitrate (ppm)					2014		10		10	5.84	2.22-5.8	4 2.14 ¹	N/D-2.141	3.14 ¹	0-3.141	0.55 ¹	0-0.55 ¹	No	Runoff from	n fertilizer use; Leaching from	
Selenium (ppb)				1	2014		50		50	0.004	0-0.004	0.0041	0-0.0041	6.3 ¹	0-6.31	ND	NA	No	Discharge f Discharge f	rom petroleum and metal r rom mines	
TTHMs [Total Trihalo	methanes]]-Staş	ge 1 (p	pb)	2015		80		NA	6.2	0-6.2	ND	NA	82.3	0-82.3 ³	126	0-1264	No	By-product	of drinking water disinfect	
Thallium (ppb)				1	2015		2		0.5	ND	NA	ND	NA	ND	NA	ND	NA	No	Leaching fro	om ore-processing sites; Discl	
Total Coliform Bacteria (# positive samples)	a			:	2015		han 1 posit thly sample		0	ND	NA	ND	NA	0.3%	NA	ND	NA	No	Naturally p	resent in the environment	
Total Organic Carbon	ı				2014		ΤT		NA	ND	NA	ND^1	NA ¹	2.45 ¹	2.21-2.451	ND	NA	No	Naturally p	resent in the environment	
Turbidity ⁵ (NTU)					2015		TT		NA	ND	NA	ND	NA	0.21	NA	ND	NA	No	Soil runoff		
Turbidity (Lowest mon meeting limit)	thly percen	nt of s	amples	s É	2015		ΤT		NA	ND	NA	ND	NA	100%	NA	ND	NA	No	Soil runoff		
Tap water samples were co	ollected for	lead a	ind cop	per analy	ses from s	ample s	ites through	out the c	commur	nity ⁶											
						t Bliss-I	Main Post			Big	gs Army Airfi	ld	El Pas	o Water Utilit	ies	East Big	gs Water Sys	tem			
SUBSTANCE UNIT OF MEASURE) S	YEAR AMPLED	AL	МС		IOUNT DE (90TH%)			BOVE AL . SITES	/ AN	IOUNT DETE (90TH%TILE		ES ABOVE AL/ OTAL SITES	AMOUNT DE (90TH%T		SITES A ABOVE AL	MOUNT DETEC (90TH%TILE		TES ABOVE TOTAL SITES	VIOLATION	TYPICAL SOURCE	
Copper (ppm)	2014	1.3	1	.3	0.068	85	0.	/30		0.11		0/20	0.47	I .	0^1	0.654		0/30	No	Corrosion of household p	
11	2014	15	(0	1.1		0.	/30		ND^1		0/201	2.21		01	3.14		0/30	No	Corrosion of household p	
SECONDARY SUBS		_				liss-Maiı				Airfield								² One s		d 12.0 ppb; the running annua	
	YEAR SAMPLED			MCLG		TED L	RANGE .ow-HIGH		ED	RANGE LOW-HIGH		TYPICAL SO		Deside 1.C	C			³ One sample measured 82.3 ppb, the running at ⁴ One sample measured 126 ppb; the running an ⁵ Turbidity is a measure of the cloudiness of the			
Aluminum (ppb)	2014	2	200	NA	6.8		0–6.8	ND		NA	No	Erosion of	natural deposits;	Residual from	m some surface	water treatme	ent processo	the effectiveness of the filtration system.			

Runoff/leaching from natural deposits

Runoff/leaching from natural deposits

Runoff/leaching from natural deposits; Industrial wastes

Naturally occurring

sample draw. ⁷ Sampled in 2014.

⁸Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

UNREGULATED SUBSTANCES ⁸

NA

2015

2014

2015

250

6.5-8.5

250

1,000

NA

NA

NA

NA

ND

8.4

132

693

NA

6.8-8.4

56-132

344-693

Chloride (ppm)

pH (Units)

Sulfate (ppm)

Total Dissolved

Solids [TDS] (ppm)

				-					Samn	
		Ft Bliss-	Main Post	Biggs Army Airfield		El Paso Water Utilities			Sampl	
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE	Fort B state	
Bromodichloromethane (ppb)	2015	ND	NA	ND	NA	26.2	0–26.2	By-product of drinking water disinfection	round of otherwise	
Bromoform (ppb)	2015	3.37	0-3.37	ND	NA	29.3	0–29.3	By -product of drinking water disinfection	for certai	
Chloroform (ppb)	2015	ND	NA	ND	NA	25.2	0–25.2	By-product of drinking water disinfection	Some of	
Dibromochloromethane (ppb)	2015	2.43	0-2.43	ND	NA	30.3	0-30.3	By-product of drinking water disinfection	FBWSC	
Sodium (ppm)	2014	96.6	84.2–96.6	85.5	85.5–85.5	ND	NA	Erosion of natural deposits;byproduct of oil field activity	drinking in drinki	

 48.3^{7}

8.2

55.7

343

0-48.37

7.8-8.2

0 - 55.7

0-343

No

No

No

No

ling Results

Bliss Water Services Company and El Paso Water Utilities routinely monitor for contaminants in your drinking water according to federal and laws. These tables list all the drinking water contaminants that Fort Bliss Water Services Company or El Paso Water Utilities detected in the last sampling for the particular contaminant group. The presence of contaminants does not necessarily indicate that water poses a health risk. Unless se noted, the data presented in this table are from testing done January 1 through December 31, 2015. The EPA or the state requires us to monitor in contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. the data, though representative of the water quality, is more than one year old.

participated in the 3rd stage of the EPA's Unregulated Contaminant Monitoring Rule (UCMR3) program by performing additional tests of our water. UCMR3 benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be ing water to determine if EPA needs to introduce new regulatory standards to improve drinking water quality.

Fire retardants; Ceramics; Electronics; Solder om orchards; runoff from glass and electronics

from metal refineries; Erosion of natural deposits osits

- ction
- bes
- bes
- ction

rosion of natural deposits

ditive which promotes strong teeth; Discharge

ction

om septic tanks, sewage; Erosion of natural deposits l refineries; Erosion of natural deposits;

ction

scharge from electronics, glass, and drug factories

plumbing systems; Erosion of natural deposits l plumbing systems; Erosion of natural deposits

ual average for that location was 5.9 ppb. ual average for that location was 21.6 ppb. ual average for that location was 31.7 ppb. vater. It is monitored because it is a good indicator of

⁶Lead and copper concentration shown are at the 90th percentile level at the customer's tap first

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant **Level**): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available

treatment technology. MCLG (Maximum Contaminant

Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

N/D (Not detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.