Serving Those Who Serve

2023 Water Quality Report - Fort Bliss PWS ID#: TX0710020, TX0710078, TX0710187 Fort Bliss Water Services Company, Inc. American States Utility Services, Inc.

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (915) 564-1332

Dedicated to Delivering Clean Water

Every day, people depend on American States Utility Services, Inc. (ASUS) for the water that enhances their quality of life. We operate and maintain water and wastewater systems on military bases across the country, dedicating ourselves to producing drinking water that meets all state and federal standards and continually striving to adopt new methods for delivering the best quality drinking water to the military installations we serve. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education, while continuing to meet the needs of all of our water users.

Fort Bliss Water Services Company, Inc., a wholly-owned subsidiary of ASUS, is the sole provider of your water service. Our certified operators ensure the safe delivery of all potable water, taking water samples at approved sites to ensure its quality throughout our system. With a deep commitment to customer care, ASUS works diligently to protect every drop of water. As a utility provider, we constantly analyze our systems to determine which areas might need repair, replacement, or even supplementary facilities. ASUS also puts a strong focus on water efficiency, actively providing educational outreach for customers to further encourage better resource management.

We at ASUS are proud to be able to provide our services to the military personnel, civilians, and family members who live and work at Fort Bliss. We are honored to support the role your military installation plays in defending the country, both at home and abroad. We achieve this goal by always putting our fundamental ideals into practice. We pay special attention to the ultimate measure of success: our customer's peace of mind.

In order to maintain a safe and dependable water supply, we sometimes need to make improvements that will benefit all our customers. With our own team's deeply-rooted military background, we have an intimate understanding of what it takes to make an installation thrive, and we take pride in delivering unparalleled care in this regard.

We are pleased to present you with this annual water quality report and thank you for allowing us to serve you and your family. Please remember that we are always available to assist you should you ever have any questions or concerns about your water. For more details, you can view our past and current Water Quality Reports at www.asusinc.com.

Sincerely,

Gilbert G. Mesa, P.E. Utility Manager FortBlissWaterServicesCompany, Inc.

Franklin Jones Director of Operations American States Utility Services, Inc.

Important Information About Your Water

Source Water Assessment

The Texas Commission on Environmental Quality (TCEQ) completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Gilbert Mesa, (915) 564-1332.

What the EPA Wants You to Know

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/safewater

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in your drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or www.epa.gov/safewater/lead.

Substances that Could Be in Your Water

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations, which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling EPA's Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/safewater/lead.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Important Information About Your Water

Substances that Could Be in Your Water (cont'd)

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or a result of oil and gas production and mining activities.

2023 Water Quality Test Results

Our drinking water is obtained from groundwater sources. The Hueco Mesilla Bolson Aquifer is located east and west of the Franklin Mountains in far west Texas and is recognized as a major aquifer in Texas. Fort Bliss Water Services Company (FBWSC) currently owns and operates three community-based Public Water Systems (PWSs) within Fort Bliss.

The water distribution systems for Main Post Fort Bliss (TX0710020) and Biggs Army Airfield (TX0710078) are self-sustaining systems, operating independently of one another. The primary water supply for these systems derives from wells located within the Fort Bliss Army Garrison property. Zero percent of this water is purchased from El Paso Water (EPW). East Biggs Water System (TX0710187) is supplied by water that is purchased from EPW. In the event that the FBWSC water systems are incapable of providing sufficient supply, EPW water can be accessed via emergency interconnections to the FBWSC water distribution system.

Our water is monitored for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1 to December 31, 2023. The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. Data obtained before January 1, 2023, and presented in this report, is from the most recent testing done in accordance with the laws, rules, and regulations.

Regulated Substances - Fort Bliss Main Post Area

Inorganic Contaminants

Inorganic Contaminants	Sample Year	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2023	4.1	3.9 - 4.1	0	10	ppb	Ν	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2023	0.069	0.068 - 0.069	2	2	ppm	Ν	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium	2023	7.6	6.8 - 7.6	100	100	ppb	Ν	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	2023	0.968	0.883 - 0.968	4	4.0	ppm	Ν	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2023	2.75	2.69 - 2.75	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider

2023 Water Quality Test Results - Regulated Substances - Fort Bliss Main Post Area

Radioactive Contaminants

Radioactive Contaminants	Sample Year	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2023	9.8	9.1 - 9.8	0	50	pCi/L*	Ν	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2023	3	1 - 3	0	15	pCi/L	Ν	Erosion of natural deposits.
Uranium	2023	3.9	3.8 - 3.9	0	30	ug/l	Ν	Erosion of natural deposits.

* EPA considers 50 pCi/l to be the level of concern for beta particles.

Lead and Copper

Lead and Copper	Sample Year	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2021	1.3	1.3	0.095	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2021	0	15	ND	0	ppb	N	Erosion of natural deposits; residential plumbing corrosion

Disinfection By-Products

Disinfection By- Products	Sample Year	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	6	0 - 16.2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	13	0 - 45.5	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5/TTHM sample results collected at a location over a year

Coliform Bacteria

Coliform Bacteria	Sample Year	Total # of Positive <i>E. coli</i> or Fecal Coliform Samples	MCL	MCLG	Violation	Likely Source of Contamination
Coliform Bacteria, E. coli	2023	0	Repeat samples were negative for total coliforms and E. coli	0	Ν	Naturally present in the environment.

Disinfectant Residual

Disinfectant Residual	Sample Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Units	Violation (Y/N)	Source in Drinking Water
Chlorine	2023	1.33	0.22 – 2.37	4	4	ppm	Ν	Water additive used to control microbes.

*The value consists of the average of all the samples taken throughout the year.

2023 Water Quality Test Results - Regulated Substances - Fort Bliss Biggs Army Airfield

Inorganic Contaminants

Inorganic Contaminants	Sample Year	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2023	7	7 - 7	0	10	ppb	N	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2023	0.054	0.054 - 0.054	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium	2023	3.6	3.6 - 3.6	100	100	ppb	Ν	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	2023	0.801	0.801 - 0.801	4	4.0	ppm	Ν	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2023	1.73	1.73 - 1.73	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

While your drinking water meets EPA standards for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Radioactive Contaminants

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	7.1	7.1 - 7.1	0	50	pCi/L*	Ν	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	2	2 - 2	0	15	pCi/L	Ν	Erosion of natural deposits.
Uranium	2022	3.6	3.6 - 3.6	0	30	ug/l	Ν	Erosion of natural deposits.

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Lead and Copper

Lead and Copper	Sample Year	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.0961	0	ppm	Ν	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2023	0	15	ND	0	ppb	N	Erosion of natural deposits; residential plumbing corrosion

Disinfection By-Products

Disinfection By- Products	Sample Year	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	4	3.5 - 3.5	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2023	2	2.44 - 2.44	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5/TTHM sample results collected at a location over a year

2023 Water Quality Test Results - Regulated Substances - Fort Bliss Biggs Army Airfield

Coliform Bacteria

Coliform Bacteria	Sample Year	Total # of Positive <i>E. coli</i> or Fecal Coliform Samples	MCL	MCLG	Violation	Likely Source of Contamination
Coliform Bacteria, E. coli	2023	0	Repeat samples were negative for total coliforms and E. coli	0	Ν	Naturally present in the environment.

Disinfectant Residual

Disinfectant Residual	Sample Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Units	Violation	Source in Drinking Water
Chlorine	2023	1.37	0.51 – 2.36	4	4	ppm	N	Water additive used to control microbes.

2023 Water Quality Test Results - Regulated Substances - East Biggs Water System – Data collected from purchased water provider

Inorganic Contaminants

Inorganic Contaminant	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2023	0.0097	<0.001 - 0.0097	0	10	ppb	Ν	Erosion or natural deposits; runofffrom or chards; runofffrom glass, electronics production wastes
Barium	2023	0.11	0.029 - 0.11	2	2	ppm	Ν	Discharge from drilling wastes; discharge from metal refineries; erosion of naturaldeposits
Chromium	2023	0.0061	0.001 - 0.0061	100	100	ppb	Ν	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride	2023	1.27	0.348 - 1.27	4	4	ppm	Ν	Erosion of natural deposits; water additive which promotes strong teeth; discharge from aluminum factories
Mercury	2023	1.96	<0.2 - 1.96	2	2	ppb	Ν	Erosion of natural deposits
Nitrate (measured as Nitrogen)	2023	4.55	<0.01 - 4.55	10	10	ppm	Ν	Runoff from fertilizer use; leaching from septic tanks, sewages; erosion of natural deposits
Selenium	2023	23	<5 - 23	50	50	ppb	Ν	Runoff from fertilizer use

Radioactive Contaminants

Radioactive Contaminants	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2023	11.7	<4.0 - 11.7	0	50	pCi/L	Ν	Decay of natural & man-made deposits
Gross alpha, excluding radon and uranium	2023	3.0	<3.0 - 3.0	0	15	pCi/L	Ν	Erosion of natural deposits
Combined Radium (-226 &228)	2023	1.5	<1 - 1.5	0	5	piC/L	Ν	Erosion of natural deposits
Uranium	2023	5.1	<1 - 5.1	0	30	ppb	Ν	Erosion of natural deposits

 \ast EPA considers 50 pCi/l to be the level of concern for beta particles

Organic Contaminants

Organic Contaminant	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Picloram	2023	0.186	<0.1 - 0.186	0	10	ppb	Ν	Herbicide runoff
Total Xylenes	2021	5.15	<0.5 - 5.15	10000	10000	ppb	Ν	Discharge from rubber and chemical plants

Lead and Copper

Lead and Copper	Sample Year	MCLG	Action Level (AL)	90 th Percentile	# Site over AL	Units	Violation	Likely Source of Contamination
Copper	2022	1.3	1.3	0.39	0	ppm	N	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems
Lead	2022	0	15	1.5	0	ppb	Ν	Erosion of natural deposits; residential plumbing corrosion

Disinfection By-products

Disinfection By-products	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (THAA)	2023	64.5	<1 - 64.5	N/A	60	ppb	Ν	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2023	110	<1 - 110	N/A	80	ppb	N	By-product of drinking water disinfection
Bromate	2023	2.56	<2 - 2.56	0	10	ppb	N	By-product of drinking water disinfection
Chlorite	2023	0.0127	<0.01 - 0.0127	0.8	1	ppm	N	By-product of drinking water disinfection

Coliform Bacteria

Coliform Bacteria	Sample Year	Total # of Positive <i>E. coli</i> or Fecal Coliform Samples	MCL	MCLG	Violation	Likely Source of Contamination
Coliform Bacteria, E. coli	2023	0	Repeat samples were negative for total coliforms and E. coli	0	N	Naturally present in the environment.

Disinfectant Residual

Disinfectant Residual	Sample Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Units	Violation	Source in Drinking Water
Chlorine	2023	2.02	1.31 - 2.62	4	4	ppm	Ν	Water additive used to control microbes.
Chlorine Dioxide	2023	0	0	800	800	ppb	N	Water additive used to control microbes.

Volatile Organic Contaminants

Volatile Organic Contaminant	Sample Year	Average Level	Range of Samples	MCL	MCLG	Violation	Possible Source
Ethylbenzene ppb	2021	0.033	< 0.5 - 9	700	700	No	Discharge from petroleum refineries

Inorganic Contaminants

Unregulated Contaminants	Sample Year	Average Level	Range	MCL	MCLG	Units	Likely Source of Contamination
Chloroform	2022	0.59	<1.0 - 26.1	N/A	70	ppb	By-product of drinking water disinfection
Bromoform	2022	1.93	<1.0 - 13.6	N/A	0	ppb	By-product of drinking water disinfection
Bromodichloromethane	2022	1.33	<1.0 - 24.8	N/A	0	ppb	By-product of drinking water disinfection
Dibromochloromethane	2022	2.36	<1.0 - 17.1	N/A	60	ppb	By-product of drinking water disinfection

*Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

2023 Water Quality Test Results - East Biggs Water System - Data collected by ASUS/FBWSC

Inorganic Contaminants

Inorganic Contaminant	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate (measured as Nitrogen)	2023	1.86	0.344 - 1.86	10	10	ppm	Ν	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Lead & Copper

Lead & Copper	Collection Date	MCLG	Action Level (AL)	90 th Percentile	# Sites over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.155	0	ppm	N	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems
Lead	2023	0	15	7.6	2	ppb	N	Erosion of natural deposits; residential plumbing corrosion

Disinfection By-products

Disinfection By-products	Sample Year	Highest Level Detected	Range	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (THAA)	2021	28.8	0 - 28.8	N/A	60	ppb	N	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2023	43	0 - 101	No goal for the total	80	ppb	N	By-product of drinking water disinfection
Haloacetic Acids (HAA5)	2023	10	0 - 32.7	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Coliform Bacteria

Coliform Bacteria	Sample Year	Total # of Positive <i>E. coli</i> or Fecal Coliform Samples	MCL	MCLG	Violation	Likely Source of Contamination
Coliform Bacteria, E. coli	2023	0	Repeat samples were negative for total coliforms and E. coli	0	Ν	Naturally present in the environment.

Disinfectant Residual

Disinfectant Residual	Sample Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Units	Violation	Source in Drinking Water
Chlorine	2023	1.49	0.20 – 2.26	4	4	ppm	N	Water additive used to control microbes.

Public Notice

Violations for purchased water provider (El Paso Water)

	Chlorite Some infants and young children who drink water containing chlorite in excess of the MCL could experience nervous system effects. Similar effects may occur in fetuses of pregnant women who drink water containing chlorite in excess of the MCL. Some people may experience anemia.							
Violation Type	Violation Begin	Violation End	Violation Explanation					
Chlorite	5/1/2023	5/31/2023	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated					

Revised Total Coliform Rule (RTCR)							
The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne diseases caused by E. coli. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children.							
Violation Type	Violation Begin	Violation End	Violation Explanation				
Monitoring, Routine, Minor (RTCR)	2/1/2023	2/28/2023	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.				

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

CHEMICAL SAMPLING - CHEMICAL MONITORING, ROUTINE MAJOR

The El Paso Water Utilities Public Service Board water system PWS ID TX0710002 has violated the monitoring/reporting requirements set by Texas Commission on Environmental Quality (TCEQ) in Chapter 30, Section 290, Subchapter F. Public water systems are required to collect and submit chemical samples of water provided to their customers and report the results of the monitoring to TCEQ on a regular basis.

We failed to monitor/report the following constituent: CHLORITE

This violation occurred in the monitoring period of May 2023.

Results of regular monitoring are an indicator of whether your drinking water is safe from chemical contamination. We did not complete all monitoring/reporting for chemical constituents, and therefore TCEQ cannot be sure of the safety of your drinking water during this time.

We are taking the following action to address this issue: All subsequent monthly monitoring samples were collected and reported to TCEQ demonstrating the El Paso Water did not exceed the established chlorite MCL. El Paso Water Utilities Public Service Board is in compliance at this time.

Please share this information with all other people who drink this water, especially those who may not have received this notice directly (i.e. people in apartments, nursing homes, schools, and business). You can do this by posting this notice in a public place or distributing copies by hand or mail.

If you have questions regarding this matter, you may contact: Ruben Rodriguez at (915) 594-5772.

This notice is being sent to you by EL PASO WATER.

Public Water System Number: TX0710002

Date Distributed: March 29, 2024

Unregulated Contaminant Monitoring Rule (UCMR) 5

The Environmental Protection Agency (EPA) uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act (SDWA). The list of chemical contaminates below were the focus of this round of sampling. UCMR 5 results reported at or above those MRLs should be interpreted accordingly. The detection of a UCMR 5 contaminant does not represent cause for concern, in and of itself. Reference concentrations are health-based and provide context for the detection of a UCMR contaminant. They do not represent regulatory limits or action levels and should not be interpreted as an indication that the Agency (EPA) intends to establish a future drinking water regulation.

2023 UCMR5 Sampling Results for Fort Bliss Biggs Army Airfield

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
lithium	2/21/2023	82.5	9	ug/L
11-chloroeicosafluoro-3-oxaundecane-1- sulfonic acid (11Cl-PF3OudS)	2/21/2023	ND	0.005	ug/L
1H, 1H, 2H, 2H-perfluorohexane sulfonic acid	2/21/2023	ND	0.003	ug/L
(4:2 FTS)				
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid	2/21/2023	ND	0.005	ug/L
(6:2 FTS) 1H, 1H, 2H, 2H-perfluorodecane sulfonic acid (8:2 FTS)	2/21/2023	ND	0.005	ug/L
9-chlorohexadecafluoro-3-oxanone-1- sulfonic acid (9CI-PF3ONS)	2/21/2023	ND	0.002	ug/L
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	2/21/2023	ND	0.003	ug/L
hexafluoropropylene oxide dimer acid (HFPODA)	2/21/2023	ND	0.005	ug/L
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	2/21/2023	ND	0.02	ug/L
perfluorobutanoic acid (PFBA)	2/21/2023	ND	0.005	ug/L
perfluorobutanesulfonic acid (PFBS)	2/21/2023	ND	0.003	ug/L
perfluorodecanoic acid (PFDA)	2/21/2023	ND	0.003	ug/L
perfluorododecanoic acid (PFDoA)	2/21/2023	ND	0.003	ug/L
perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	2/21/2023	ND	0.003	ug/L
perfluoroheptanoic acid (PFHpA)	2/21/2023	ND	0.003	ug/L
perfluoroheptanesulfonic acid (PFHpS)	2/21/2023	ND	0.003	ug/L
perfluorohexanoic acid (PFHxA)	2/21/2023	ND	0.003	ug/L
perfluorohexanesulfonic acid (PFHxS)	2/21/2023	ND	0.003	ug/L
perfluoro-4-methoxybutanoic acid (PFMBA)	2/21/2023	ND	0.003	ug/L
perfluoro-3-methoxypropanoic acid (PFMPA)	2/21/2023	ND	0.004	ug/L
perfluorononanoic acid (PFNA)	2/21/2023	ND	0.004	ug/L
perfluorooctanoic acid (PFOA)	2/21/2023	ND	0.004	ug/L
perfluorooctanesulfonic acid (PFOS)	2/21/2023	ND	0.004	ug/L
perfluoropentanoic acid (PFPeA)	2/21/2023	ND	0.003	ug/L
perfluoropentanesulfonic acid (PFPeS)	2/21/2023	ND	0.004	ug/L
perfluoroundecanoic acid (PFUnA)	2/21/2023	ND	0.002	ug/L

2023 UCMR5 Sampling Results for Fort Bliss Biggs Army Airfield (Continued)

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
n-ethyl perfluorooctanesulfonamidoacetic	2/21/2023		0.000	1.
acid (NEtFOSAA)		ND	0.005	ug/L
n-methyl perfluorooctanesulfonamidoacetic	2/21/2023	ND	0.006	ug/I
acid (NMeFOSAA)		ND	0.006	ug/L
perfluorotetradecanoic acid (PFTA)	2/21/2023	ND	0.008	ug/L
perfluorotridecanoic acid (PFTrDA)	2/21/2023	ND	0.007	ug/L
lithium	8/21/2023	87.0	9	ug/L
11-chloroeicosafluoro-3-oxaundecane-1-	10/25/2023	ND	0.005	ug/L
sulfonic acid (11Cl-PF3OudS)				~8/ -
1H, 1H, 2H, 2H-perfluorohexane sulfonic acid	10/25/2023	ND	0.003	ug/L
(4:2 FTS)				-
1H, 1H, 2H, 2H-perfluorooctane sulfonic acid	10/25/2023	ND	0.005	ug/L
(6:2 FTS)				-
1H, 1H, 2H, 2H-perfluorodecane sulfonic acid	10/25/2023	ND	0.005	ug/L
(8:2 FTS)			0.005	46/ L
9-chlorohexadecafluoro-3-oxanone-1- sulfonic	10/25/2023	ND	0.002	ug/L
acid (9CI-PF3ONS)				5.
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	10/25/2023	ND	0.003	ug/L
hexafluoropropylene oxide dimer acid (HFPODA)	10/25/2023	ND	0.005	ug/L
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	10/25/2023	ND	0.02	ug/L
perfluorobutanoic acid (PFBA)	10/25/2023	ND	0.005	ug/L
perfluorobutanesulfonic acid (PFBS)	10/25/2023	ND	0.003	ug/L
perfluorodecanoic acid (PFDA)	10/25/2023	ND	0.003	ug/L
perfluorododecanoic acid (PFDoA)	10/25/2023	ND	0.003	ug/L
perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	10/25/2023	ND	0.003	ug/L
perfluoroheptanoic acid (PFHpA)	10/25/2023	ND	0.003	ug/L
perfluoroheptanesulfonic acid (PFHpS)	10/25/2023	ND	0.003	ug/L
perfluorohexanoic acid (PFHxA)	10/25/2023	ND	0.003	ug/L
perfluorohexanesulfonic acid (PFHxS)	10/25/2023	ND	0.003	ug/L
perfluoro-4-methoxybutanoic acid (PFMBA)	10/25/2023	ND	0.003	ug/L
perfluoro-3-methoxypropanoic acid (PFMPA)	10/25/2023	ND	0.004	ug/L
perfluorononanoic acid (PFNA)	10/25/2023	ND	0.004	ug/L
perfluorooctanoic acid (PFOA)	10/25/2023	ND	0.004	ug/L
perfluorooctanesulfonic acid (PFOS)	10/25/2023	ND	0.004	ug/L
perfluoropentanoic acid (PFPeA)	10/25/2023	ND	0.003	ug/L
perfluoropentanesulfonic acid (PFPeS)	10/25/2023	ND	0.004	ug/L
perfluoroundecanoic acid (PFUnA)	10/25/2023	ND	0.002	ug/L
n-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	8/21/2023	ND	0.005	ug/L

2023 UCMR5 Sampling Results for Fort Bliss Biggs Army Airfield (Continued)

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
n-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	8/21/2023	ND	0.006	ug/L
perfluorotetradecanoic acid (PFTA)	8/21/2023	ND	0.008	ug/L
perfluorotridecanoic acid (PFTrDA)	8/21/2023	ND	0.007	ug/L

Unregulated Contaminant Monitoring Rule (UCMR) 4

The Environmental Protection Agency (EPA) uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act (SDWA). The list of chemical contaminates below were the focus of this round of sampling. UCMR 4 results reported at or above those MRLs should be interpreted accordingly. The detection of a UCMR 4 contaminant does not represent cause for concern, in and of itself. Reference concentrations are health-based and provide context for the detection of a UCMR contaminant. They do not represent regulatory limits or action levels and should not be interpreted as an indication that the Agency (EPA) intends to establish a future drinking water regulation.

2018 – 2020 UCMR4 Sampling Results for Fort Bliss Main Post Area

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
НАА5	11/2019, 5/2020 & 7/2020	4.809	60	ug/L
HAA6Br	11/2019, 5/2020 & 7/2020	5.506	N/A	ug/L
НАА9	11/2019, 5/2020 & 7/2020	5.707	N/A	ug/L
manganese	11/2019 & 5/2020	28.5	0.4	ug/L

2018 – 2020 UCMR4 Sampling Results for Fort Bliss Biggs Army Airfield

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
HAA5	5/2020 & 12/2020	0.42	60	ug/L
HAA6Br	5/2020 & 12/2020	0.42	N/A	ug/L
НАА9	5/2020 & 12/2020	0.42	N/A	ug/L
manganese	5/2020 & 11/2020	0.8	0.4	ug/L

2018 – 2020 UCMR4 Sampling Results for East Biggs Water System

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
1-butanol	2/19, 5/19, 8/19, 11/19	3.1	2	ug/L
germanium	2/19, 5/19, 8/19, 11/19	0.3	0.3	ug/L
HAA5	2/19, 5/19, 8/19, 11/19	2.04	60	ug/L
HAA6Br	2/19, 5/19, 8/19, 11/19	2.868	N/A	ug/L
НАА9	2/19, 5/19, 8/19, 11/19	3.808	N/A	ug/L
manganese	2/19, 5/19, 8/19, 11/19	2.3	0.4	ug/L

Non-UCMR Sampling

Department of Defense's (DoD) Policy, issued July 23, 2020, requires monitoring and sampling for per- and polyfluoroalkyl substances (PFAS) at military installations where drinking water is provided by a non-DoD purveyor to ensure consumers receive safe drinking water. Accordingly, the Directorate of Public Works (DPW) sampled for PFAS in August, 2022. The list of chemical contaminates below will be the focus of the upcoming round of sampling for the UCMR 5 in 2023, which will be used to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Safe Drinking Water Act (SDWA). Results reported at or above those MRLs should be interpreted accordingly. The detection of these contaminants does not represent cause for concern, in and of itself. Reference concentrations are health-based and provide context for the detection of these contaminants. They do not represent regulatory limits or action levels and should not be interpreted as an indication that the Agency (EPA) intends to establish a future drinking water regulation. Because this sampling for PFAS was a non-UCMR event, it is not required to be included in this Consumer Confidence Report, but is being provided here for informational purposes.

2023 Non-UCMR Sampling Results for Fort Bliss Main Post Area

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
Perfluorohexanoic acid	8/02/23	ND	1.7	ug/L
Perfluorohexanesulfonic acid	8/02/23	ND	1.7	ug/L

2023 Non-UCMR Sampling Results for East Biggs Water System

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
Perfluorohexanoic acid	8/02/23	ND	1.7	ug/L
Perfluorohexanesulfonic acid	8/02/23	ND	1.7	ug/L

2022 Non-UCMR Sampling Results for Fort Bliss Main Post Area

Contaminate	Sample Dates	Highest Level Detected	MRL (ug/L)	Units
Perfluorohexanoic acid	8/16/22	1.9	1.7	ug/L
Perfluorohexanesulfonic acid	8/16/22	2.4	1.7	ug/L

DEFINITIONS

<u>AL</u> (Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples. **Level I Assessment:** A Level I assessment is a study of the water system to identify potential problems and

determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

LRAA (Locational Running Annual Average): The average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters. Amount Detected values for TTHMs and HAAs are reported as the highest LRAAs.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRL (Minimum Reporting Level): UCMR Minimum Reporting Level. The minimum concentration that may be reported by a laboratory as a quantified value for a method analyte following analysis. The MRLs were established based on the capability of the analytical method, not based on a level established as "significant" or "harmful." **MRDL (Maximum Residual Disinfectant Level):** The highest level of a disinfectant allowed in drinking water.

There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. <u>MRDLG (Maximum Residual Disinfectant Level Goal)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control

microbial contaminants.

MFL: Million fibers per liter (a measure of asbestos)

mrem: Millirems per year (a measure of radiation absorbed by the body)

N/A: Not applicable.

N/D: Not Detected. Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/l (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter). **ppm (parts per million):** One part substance per million parts water (or milligrams per liter).

ppq: parts per quadrillion, or picograms per liter (pg/L)

ppt: parts per trillion, or nanograms per liter (ng/L)

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.